Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples

نویسندگان

  • Mikhail Belkin
  • Partha Niyogi
  • Vikas Sindhwani
چکیده

We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely graph-based approaches) we obtain a natural out-of-sample extension to novel examples and so are able to handle both transductive and truly semi-supervised settings. We present experimental evidence suggesting that our semi-supervised algorithms are able to use unlabeled data effectively. Finally we have a brief discussion of unsupervised and fully supervised learning within our general framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifold regularization and semi-supervised learning: some theoretical analyses

Manifold regularization (Belkin et al., 2006) is a geometrically motivated framework for machine learning within which several semi-supervised algorithms have been constructed. Here we try to provide some theoretical understanding of this approach. Our main result is to expose the natural structure of a class of problems on which manifold regularization methods are helpful. We show that for suc...

متن کامل

Manifold Regularization: A Geometric Framework for Learning from Examples

We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can...

متن کامل

Large-Scale Sparsified Manifold Regularization

Semi-supervised learning is more powerful than supervised learning by using both labeled and unlabeled data. In particular, the manifold regularization framework, together with kernel methods, leads to the Laplacian SVM (LapSVM) that has demonstrated state-of-the-art performance. However, the LapSVM solution typically involves kernel expansions of all the labeled and unlabeled examples, and is ...

متن کامل

On Manifold Regularization

We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can b...

متن کامل

Robust Distance Metric Learning with Auxiliary Knowledge

Most of the existing metric learning methods are accomplished by exploiting pairwise constraints over the labeled data and frequently suffer from the insufficiency of training examples. To learn a robust distance metric from few labeled examples, prior knowledge from unlabeled examples as well as the metrics previously derived from auxiliary data sets can be useful. In this paper, we propose to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2006